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H0 (km s-1 Mpc-1)

Local Universe [Riess et al. 2016] 73.24 ± 1.74

Planck+WMAP+ACT+SPT+BAO 69.3 ± 0.7

Concordance Model



❖ Cosmology is emerging as a full-blown experimental science: along with better 
experiments and better data analysis, we need better modelling!

Concordance Model



❖ Cosmology is emerging as a full-blown experimental science: along with better 
experiments and better data analysis, we need better modelling!

Concordance Model



Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

❖ Optical properties are strongly affected

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

❖ Optical properties are strongly affected
❖ Loss  of  “time”  homogeneity  (e.g.  self-similarity  of  flat  cosmologies),  there  can  be  “special 

times” [Skarke 2015]

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

❖ Optical properties are strongly affected
❖ Loss  of  “time”  homogeneity  (e.g.  self-similarity  of  flat  cosmologies),  there  can  be  “special 

times” [Skarke 2015]
❖ Inhomogeneities can affect the large-scale expansion

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

❖ Optical properties are strongly affected
❖ Loss  of  “time”  homogeneity  (e.g.  self-similarity  of  flat  cosmologies),  there  can  be  “special 

times” [Skarke 2015]
❖ Inhomogeneities can affect the large-scale expansion
❖ The  large-scale  expansion  can  affect  collapsing  matter  beyond  the  perturbative  regime!  [Torres, 

Alcubierre et al. 2014, Alcubierre, de la Macorra et al. 2015, Rekier, Cordero-Carrion & Fuzfa 2015, 
Bentivegna & Bruni 2015]

Beyond Concordance



❖Hybrid  approach:  Newtonian  two-body  interaction  plus  relativistic 
“touches” [Thomas 2014, Adamek 2014-2016].

❖Post-*an approach may hold back relativistic insight:
❖ The  correspondence  between  spatial  curvature  and  energy  density  is  lost  (more  generally,  the 

mapping to homogeneous class becomes ambiguous [Ellis & Stoeger 1987, Buchert et al. 2015, Green 
& Wald 2015])

❖ Ambiguous  definition  of  cosmological  observers,  cosmological  principle  turned  upside  down 
(observers unaffected by local effects are the exception, not the rule)

❖ Optical properties are strongly affected
❖ Loss  of  “time”  homogeneity  (e.g.  self-similarity  of  flat  cosmologies),  there  can  be  “special 

times” [Skarke 2015]
❖ Inhomogeneities can affect the large-scale expansion
❖ The  large-scale  expansion  can  affect  collapsing  matter  beyond  the  perturbative  regime!  [Torres, 

Alcubierre et al. 2014, Alcubierre, de la Macorra et al. 2015, Rekier, Cordero-Carrion & Fuzfa 2015, 
Bentivegna & Bruni 2015]

❖ Averaging becomes highly non-trivial.

Beyond Concordance



Numerical Relativity for Cosmology



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

Kij = �Ln�ij



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

R+K2 �KijK
ij = 16⇡⇢

Kij = �Ln�ij



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

R+K2 �KijK
ij = 16⇡⇢

DjK
j
i �DiK = 8⇡ji

Kij = �Ln�ij



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

R+K2 �KijK
ij = 16⇡⇢

DjK
j
i �DiK = 8⇡ji

Kij = �Ln�ij

@t�ij = �2↵Kij +Di�j +Dj�i



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and 
integrating numerically. One needs to choose a time coordinate and project the equations accordingly; 
reducing the system to first-order form, one is left with twelve evolution four constraints equations:

Numerical Relativity for Cosmology

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

R+K2 �KijK
ij = 16⇡⇢

DjK
j
i �DiK = 8⇡ji

Kij = �Ln�ij

@t�ij = �2↵Kij +Di�j +Dj�i

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +Kkj�i�
k

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +Kkj�i�
k



Numerical Relativity for Cosmology



Numerical  studies  of  inhomogeneous  spacetimes  span  at  least  four  decades  (P.  Anninos, 
“Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living 
Rev. Relativity 4 (2001), 2).

Numerical Relativity for Cosmology



Numerical  studies  of  inhomogeneous  spacetimes  span  at  least  four  decades  (P.  Anninos, 
“Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living 
Rev. Relativity 4 (2001), 2).

Numerical Relativity for Cosmology

Proceedings of the NATO Advanced 
Study Institute held at Erice, Italy, 
May 11-23,1981



Numerical  studies  of  inhomogeneous  spacetimes  span  at  least  four  decades  (P.  Anninos, 
“Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living 
Rev. Relativity 4 (2001), 2).

Numerical Relativity for Cosmology

Proceedings of the NATO Advanced 
Study Institute held at Erice, Italy, 
May 11-23,1981



Numerical Relativity for Cosmology



Singularities:  Matzner,  Weaver  (1970), 
Berger, Garfinkle (1991, 1997, 2004)

Numerical Relativity for Cosmology



Singularities:  Matzner,  Weaver  (1970), 
Berger, Garfinkle (1991, 1997, 2004)

Numerical Relativity for Cosmology
Inflation:  Centrella,  Wilson,  Kurki-Suonio,  Laguna,  Matzner 
(1983, 1984, 1987, 1993, 1996), Bastero-Gil, Tristram, Macias-Perez, 
Santos  (2007),  East,  Kleban,  Linde,  Senatore,  Kearney,  Shakya, 
Yoo, Zurek (2015, 2016), Braden, Johnson, Peiris, Aguirre (2016)



Singularities:  Matzner,  Weaver  (1970), 
Berger, Garfinkle (1991, 1997, 2004)

Numerical Relativity for Cosmology
Inflation:  Centrella,  Wilson,  Kurki-Suonio,  Laguna,  Matzner 
(1983, 1984, 1987, 1993, 1996), Bastero-Gil, Tristram, Macias-Perez, 
Santos  (2007),  East,  Kleban,  Linde,  Senatore,  Kearney,  Shakya, 
Yoo, Zurek (2015, 2016), Braden, Johnson, Peiris, Aguirre (2016)

Phase  transitions  in  the  early  universe  and  primordial 
gravitational waves: Rezzolla, Miller, Pantano (1995), Bastero-
Gil, Macias-Perez, Santos (2010), Wainwright, Johnson, Peiris, 
Aguirre, Lehner, Liebling (2014)



Singularities:  Matzner,  Weaver  (1970), 
Berger, Garfinkle (1991, 1997, 2004)

Numerical Relativity for Cosmology
Inflation:  Centrella,  Wilson,  Kurki-Suonio,  Laguna,  Matzner 
(1983, 1984, 1987, 1993, 1996), Bastero-Gil, Tristram, Macias-Perez, 
Santos  (2007),  East,  Kleban,  Linde,  Senatore,  Kearney,  Shakya, 
Yoo, Zurek (2015, 2016), Braden, Johnson, Peiris, Aguirre (2016)

Phase  transitions  in  the  early  universe  and  primordial 
gravitational waves: Rezzolla, Miller, Pantano (1995), Bastero-
Gil, Macias-Perez, Santos (2010), Wainwright, Johnson, Peiris, 
Aguirre, Lehner, Liebling (2014)

Large-scale structure, black-hole formation: Anninos, Centrella, McKinney, 
Wilson (1984, 1985, 1999), Shibata (1999), Bentivegna, Korzyński, Hinder, 
Bruni  (2012-2015),  Yoo,  Okawa,  Nakao  (2012-2014),  Torres,  Alcubierre, 
Diez-Tejedor, Nunez, de la Macorra (2014-2015), Rekier, Cordero-Carrion, 
Fuzfa (2015)



Numerical Relativity for Cosmology



The Einstein Toolkit:

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

❖ AMR capabilities;

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

❖ AMR capabilities;
❖ Leveraging HPC systems 

worldwide;

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

❖ AMR capabilities;
❖ Leveraging HPC systems 

worldwide;
❖ Tutorials and demos for 

new users — try it out!

Numerical Relativity for Cosmology



The Einstein Toolkit:
❖ Open-source toolkit;
❖ One code-generating 

framework;
❖ Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

❖ AMR capabilities;
❖ Leveraging HPC systems 

worldwide;
❖ Tutorials and demos for 

new users — try it out!

Numerical Relativity for Cosmology

einsteintoolkit.org



The Late Universe



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

The Late Universe



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

❖ Approach I: relativistic “N-body”, regular lattices of black holes

The Late Universe



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

❖ Approach I: relativistic “N-body”, regular lattices of black holes

❖ Approach II: evolution of perturbed perfect fluids beyond the perturbative regime

The Late Universe



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

❖ Approach I: relativistic “N-body”, regular lattices of black holes

❖ Approach II: evolution of perturbed perfect fluids beyond the perturbative regime

In both cases, one first has to solve the constraint system:

The Late Universe



Construct numerical, fully relativistic spacetimes satisfying the Cosmological 
Principle above a certain scale but inhomogeneous below it.

❖ Approach I: relativistic “N-body”, regular lattices of black holes

❖ Approach II: evolution of perturbed perfect fluids beyond the perturbative regime

In both cases, one first has to solve the constraint system:

The Late Universe

�ij =  4�̃ij Kij =
K

3
�ij +  �4Ãij
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❖ [Support from project CosmoToolkit (PIRG05-GA-2009-249290)]
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 �7ÃijÃ

ij

!
dV = 2⇡

 Z

D
⇢ 5dV +

X

i

mi

!

 = 1 +
X

i

mi

2ri



Further constraint: 

On  an  asymptotically  flat  space,  the  surface  terms  at 
infinity and around the punctures cancel: 

However,  there  is  no  surface  term  on  the  periodic 
boundaries. In a periodic space, the extrinsic curvature and 
the  scalar  curvature  cannot  both  be  zero!  No  time 
symmetric,  spatially-flat  solution  (homogeneous  dust 
models have the same properties).
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 �7ÃijÃ
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Keep a zero extrinsic curvature, but 
choose  a  conformal  metric  that  is 
not flat [Wheeler 1983, Clifton et al. 
2012]:

Notes: 

Solutions  only  for  positive  scalar 
curvature  (analogy  to  the  FLRW 
class);

The hamiltonian constraint is linear! 
One  can  use  the  superposition 
principle  to  construct  multi-black-
hole solutions.
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separation of the extrinsic curvature into its trace K and traceless part Aij :

�ij = ⌅4 �̃ij (3)

Kij =
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�ij +Aij (4)

In terms of these, the constraints take the form:
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⌅5 +
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8
ÃijÃ

ij⌅�7 = 0 (5)

D̃iÃ
ij � 2

3
⌅6�̃ijD̃iK = 0 (6)

�̃ being the laplacian operator of the conformal metric �̃ij , and Ãij being related
to Aij by Ãij = ⌅2Aij .

Let us focus on the hamiltonian constraint. We would like to solve this
equation with the “puncture” ansatz for the conformal factor:

⌅ =
M

r
(7)

[TODO: what is r?] and periodic boundary conditions. It can be easily proven,
then, that unlike in the asymptotically-flat case, if Kij and R are both zero,
then this is a slice of Minkowski spacetime. This becomes apparent if one
integrates both sides of equation 5 on the fundamental cell of the desired lattice
(see Figure ??):
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V
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⇤

Si

�̃⌅ +

⇤

So

�̃⌅ = �M (8)

which is only satisfied if M = 0. [TODO: I know this works if the metric is
conformally flat. Does it hold in general?]

Thus, for non-zeroM , there are at least two possibilities: a non-zero extrinsic
curvature or a non-zero spatial scalar curvature. In this work, we concentrate
on the Kij = 0 case, since the momentum constraint is trivally satisfied and the
hamiltonian constraint remains linear, and one can therefore construct multiple–
black-hole solution by superposition. We concentrate on the positive-R case,
where the spatial slices have the topology of S3. [TODO: In fact, they are
conformally S3. I think this is theorem, and we should cite it]

Notice that, whilst this argument strictly applies only to initial-data genera-
tion in the conformal transverse-traceless case, it is arguable that the additional
constraint due to the periodic requirement is quite a general feature.

2.1 Punctures on a 3–sphere

We consider puncture–like solutions of the hamiltonian constraint when �̃ij and
R̃ are the metric tensor and scalar curvature of S3:

�̃⌅ � R̃

8
⌅ = 0 (9)

We fix coordinates on S3 such that:

ds2 = d⇤2 + sin2 ⇤
�
d⇥2 + sin2 ⇥ d⇧2

⇥
(10)
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Other  properties,  however,  can  be  substantially  different.  In  particular, 
mapping the BH lattices to the FLRW class via their geometric properties leads 
to counterparts with much larger effective densities [Bentivegna & Korzyński 
2012, 2013]:
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Other  properties,  however,  can  be  substantially  different.  In  particular, 
mapping the BH lattices to the FLRW class via their geometric properties leads 
to counterparts with much larger effective densities [Bentivegna & Korzyński 
2012, 2013]:

                                                                               One must choose which mapping
                                                                               to use (fitting problem non 
                                                                               trivial). Fitting one observable 
                                                                               leads to a degradation in the 
                                                                               quality of fit to the others.
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2a3e↵ = 378.78, M8BH = 8MADM = 303.53
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Dust cosmologies
How universal is this result?
Same procedure in non-vacuum spacetimes, same ID restriction [Anninos 1999, Giblin, 
Mertens & Starkman 2015, Bentivegna&Bruni, 2015]:

Approach much more similar to standard cosmological treatments of perturbed fluids. 
Many analytical approximations available in various regimes.

DENSITY CONTRAST VOLUME ELEMENT
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Universe is necessary, and feasible.
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Early results are intriguing:

Universal initial-data no-go

Length scaling follows FLRW class

Other properties can vary significantly
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