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formation.
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Parameter Prior range Bascline Definition
P Y ¢ N [0.005,0.1] Baryon density today
wemh L [0.001,0.99] Cold dark matier density today
10080uc o ovvvnnnn [0.5,10.0] - 100 x approximation to r, /D, (CosmoMC)
L A [0.01,0.8) . Thomson scattering optical depth due to refonization
Qr coeeiennnnn. [-0.3,0.3) 0 Curvature parameter today with 2, = 1 -y
Tmoooi [0,5) 0.06 The sum of neutrino masses in eV
AP [0,3) 0 Effective mass of sterile neutrino in eV
Wileevnnnnrrnnss [-=3.0,-0.3] -1 Dark energy equation of state®, wi(a) = wy + (1 = a)w,
Woesnassssssens -2,2) 0 As above (perturbations modelled using PPF)
Nt coviinnnnnns [0.08,10.0] 3.046 Effective number of neutrino-like relativistic degrees of freedom (see text)
. [0.1,0.5] BBN Fraction of baryonic mass in helium
Al cinesnnrnnnns [0,10) ] Amplitude of the lensing power relative to the physical value
My oo [09,1.1] e Scalar spectrum power-law index (ky = 0.05Mpc™)
Mo oo n=-roes/8  Inflstion  Temsor spectrum power-law index (ky = 0.05Mpe ')
dnjdink........ [-1,1] 0 Running of the spectral index
In(10°A) ....... [2.7,4.0) . Log power of the primordial curvature perturbations (k; = 0.05 Mpc™')
POGB+ v snvonvnnns [0,2) 0 Ratio of tensor primordial power to curvature power at k, = 0,05 Mpc ™
Dy ccaccccsanea ane Dark energy density divided by the critical density today
00 ceeeeieinenn e Age of the Universe today (in Gyr)
-+ T ses Matter density (inc. massive neutrinos) today divided by the critical density
Ossnasescsesss 858 RMS matter fluctuations today in linear theory
Zapoosssscssrnnns e Redshift at which Universe is half reionized
| [20,100) Current expansion rate in km s '‘Mpe ™'
POGOD + v v v nvnrnns 0 Ratio of tensor primordial power o curvature power at k, = 0.002 Mpc ™
100°A, ... . 10° x dimensionless curvature power spectrum at k, = 0.05Mpe™
We = QN ..., . Total matter density today (inc. massive neutrinos)
o venensnrnnnns Redshift for which the optical depth equals unity (see text)
rn=rfz)....... Comoving size of the sound horizon at z = 2,
1004, .......... 100 x angular size of sound horizon at z = z, (r./D,)
Limgesscssssasas Redshift st which baryon-drag optical depth equals unity (see text)
Poug ™ F(Zaeng) + 0 o - Comoving size of the sound horizon at z = 2,
Kpy oot Characteristic damping comoving wavenumber (Mpc™')
1006 ......000. 100 x angular extent of photon diffusion at last scattering (sce text)
. Redshift of matter-radiation equality (massless neutrinos)
10060, ..o vvvvnns 100 x angular size of the comoving horizon at matter-radiation equality
Pasg/DV(0OST) . . .. BAO distance ratio at z = 0.57 (see Sect. 5.2)

[Planck 2013 results XVI]



Concordance Model

Parameters of
different nature
[Trotta 2008]:

* 5/6 parameters for the
background evolution

* 10 parameters for the
initial fluctuations

7/
%

A number of nuisance
parameters

* Any parameter
connected to new

physics

Parameter Prior range Bascline Definition
PR o N [0.005,0.1) — Baryon density today
aowmh....... [0.001,0.99] Cold dark matter density today
10080yc . ovvvvnns [0.5,10.0] - 100 x approximation to 7. /D, (CosmoMC)
Tasasasasssnana [0.01,0.8] ans Thomson scattering optical depth due to rejonization
(3 T, (-0.3,03) 0 Curvature parameter today with €2, = 1 -
Tmoooi [0,5) 0.06 The sum of neutrino masses in eV
- PPYTIY [0,3) 0 Effective mass of sterile neutrino in eV
L, (=3.0,-0.3) -1 Dark equation of state®, wia) = wy + (1 - a)w,
Woeivasnansnans -2.2) 0 As d::&mw modelled using PPF)
Netcovnnnnnnnns [0.08, 10.0) 3.046 Effective number of neutrino-like relativistic degrees of freedom (see text)
Vpoeiiiiiiinnns [0.1,0.5) BBN Fraction of baryonic mass in helium
Al cinesnnrnnnns [0,10) ] Amplitude of the lensing power relative to the physical value
My oo [09,1.1] e Scalar spectrum power-law index (ky = 0.05Mpc™)
Mo oo n=-roes/8  Inflstion  Temsor spectrum power-law index (ky = 0.05Mpe ')
dnjdink........ [-1,1] 0 Running of the spectral index
In(10°A) ....... [2.7,4.0) . Log power of the primordial curvature perturbations (k; = 0.05 Mpc™')
POGB+ v snvonvnnns [0,2) 0 Ratio of tensor primordial power to curvature power at k, = 0,05 Mpc ™
Dy ccaccccsanea ane Dark energy density divided by the critical density today
00 ceeeeieinenn e Age of the Universe today (in Gyr)
-+ T ses Matter density (inc. massive neutrinos) today divided by the critical density
Ossnasescsesss 858 RMS matter fluctuations today in linear theory
Zopssesssonsonnse - Redshift at which Universe is half reionized
| [20,100) Current expansion rate in km s '‘Mpe ™'
POGOD + v v v nvnrnns 0 Ratio of tensor primordial power o curvature power at k, = 0.002 Mpc ™
100°A, ... . 10° x dimensionless curvature power spectrum at k, = 0.05Mpe™
W= ..., . Total matter density today (inc, massive neutrinos)
o venensnrnnnns Redshift for which the optical depth equals unity (see text)
rn=rfz) ....... Comoving size of the sound horizon at z = 2,
1004, .......... 100 x angular size of sound horizon at z = z, (r./D,)
Limgesscssssasas Redshift st which baryon-drag optical depth equals unity (see text)
Poug ™ F(Zaeng) + 0 o - Comoving size of the sound horizon at z = 2,
Kpy oot Characteristic damping comoving wavenumber (Mpc™')
1006 ......000. 100 x angular extent of photon diffusion at last scattering (sce text)
. Redshift of matter-radiation equality (massless neutrinos)
10060, ..o vvvvnns 100 x angular size of the comoving horizon at matter-radiation equality
Pasg/DV(0OST) . . .. BAO distance ratio at z = 0.57 (see Sect. 5.2)

[Planck 2013 results XVI]



Concordance Model

K7
L 4

Parameters of
different nature
[Trotta 2008]:

* 5/6 parameters for the
background evolution

* 10 parameters for the
initial fluctuations

“ A number of nuisance
parameters

* Any parameter
connected to new

physics

Definition

L4 P Dark energy density divided by the critical density today
0D weeeeiennnn Age of the Universe today (in Gyr)
-+ T Marter density (inc. massive neutrinos) today divided by the critical density
O eenncnnnnnnn RMS matter fluctuations today in linear theory
Zoessnssssnsnnns Redshift at which Universe is half reionized
Hy «oiiiiiio.. [20,100) Current expansion rate in kms~'Mpe™'
FOGOD v nnrrnnnn Ratio of tensor primordial power to curvature power at k, = 0,002 Mpc
10°A, ...ovinnnn 10° x dimensionless curvature power spectrum at ky = 0.05Mpe ™
PO o 3 . Total matter density today (inc, massive neutrinos)
Zo vannnnnrannns Redshift for which the optical depth equals unity (see text)
rn=rfz) ....... Comoving size of the sound horizon at z = 2,
1008, .......... 100 x angular size of sound horizon at z = z, (r./Dy)
............ Redshift at which baryon-drag optical depth equals unity (see text)
Pase ™ 7y(Zaeng) Comoving size of the sound horizon at z = 2.,
Ky e Characteristic damping comoving wavenumber (Mpc™')
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Parameters of P oot mage e
Al cosansass (0,360 Contribution of Poisson point-soarce power 1o DY foe Planck (in yK*)
. A% ... (0,270) As for ATS, but at 143GHz
different nature N 10,450} As for ATS,.bat a1 217 Gz
Py o (0,1 Point-source correlation coefficient for Planck between 143 and 217 GHz
A (0,20 Contridwation of CIB power 10 DL gt the Planck CMB frequency for 143 GHz (in K7
[TrOtta 2008] . AP (0,80) As for A2, but for 217 GHz
B sencess [0,1) CIB correlation cocflicient between 143 and 217 GHz
YW o [-2,2](0.7 £+ 0.2) Spectral index of the CIB asgular power (D, « £°7)
N A [0,10) Contridation of 1SZ 10 D24 a 143 GHz (in 4K?)
* 5/6 parameters for the P 0101 Craxtimion +1152% D, Ga sk
. S .. [0, 1] Correlation cocfficient between the CIB and 157 (see text)
backgr ound evolutlon OB ommmnnnns [0.98, 1.02] (1.0006 4 0.0004) Relative power spoctrum calibration for Phanck between 100 GHz and 143 GHz
Ouyesssnnansa [0.95, 1.05] (0.9966 + 0.0015) Relative power spoctrum calibration for Planck between 217 GHz and 143 GHz
Y- ©21) Amplitude of the jth beam cigeamade (j = 1-5) for the ith cross-spectruen (i = 1-4)
< 10 p arameters fOI' the AT [0,30) Contribution of Poisson point-source power 1o DL foe ACT (in uK?)
AT [0, 200 As for AT, Y7, but 2t 218 GHz
initial ﬂuctuations -+ . (o, 1] Point-source correlation coefficient beswees 150 and 220 GHz (for ACT and SPT)
ARS® ceaeeae. 10,51(0.8 £0.2) Contribation from Galactic cirrus to e 2t 150 GHz for ACTe (in uK*)
AT [0,5](0.4 + 0.2) As AN b for ACTSs
. . Y . [0.8,13) Map-level calibration of ACTe a1 148 GHz relative 1o Planck 143 GHz
* A number of nuisance yar [0.8,1.3) As y25%, but a1 217 GHz
Y . [0.8,13] Map-level calibration of ACTs at 148 GHz relative 1o Planck 143 GHz
parameters Y (0.8,1.3] As ¥, but at 217 GHz
AR [0,30) Contribution of Poisson point-soarce power to D% for SPT (in uK?)
AT [0,30) As foe AT but at 150 GHz
< Any p arameter AT (0, 200) As for AT, bat at 220 GHz
- JUR 10,1} Point-source correlation coeflicient betwoen 95 and 150 GHz for SPT
Connected to new . JU [0,1) As 753 but between 95 and 220 GHz
Y eansunanne [0.8,1.3] Map-level calidbration of SPT at 95 GHz relative 1o Planck 143 GHz
thSiCS Y s (0.8,1.3) As for y3I7, bet at 150GHz

Y socsansans [0.8,1.3] As for 307, bat st 220GHz

[Planck 2013 results XVI]
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* Marginalization of extra parameters

» May worsen with larger, more precise datasets

» Signs that past analyses are not so robust [Nielsen, Guffanti & Sarkar 2015,
Shariff et al. 2015]

Local Universe 7324 + 174

Planck+WMAP+ACT+SPT+BAO 693+ (0.7
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COBE (1989-1993) WMAP (2003-2012) Planck (2009-2013)
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*Loss of “time” homogeneity (e.g. self-similarity of flat cosmologies), there can be “special
times” [Skarke 2015]

+ Inhomogeneities can affect the large-scale expansion

“ The large-scale expansion can affect collapsing matter beyond the perturbative regime! [Torres,
Alcubierre et al. 2014, Alcubierre, de la Macorra et al. 2015, Rekier, Cordero-Carrion & Fuzfa 2015,
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* Averaging becomes highly non-trivial.
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Einstein’s equation can be solved exactly by formulating it as an initial-boundary value problem, and
integrating numerically. One needs to choose a time coordinate and project the equations accordingly;
reducing the system to first-order form, one is left with twelve evolution four constraints equations:
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Numerical Relativity for Cosmology

Numerical studies of inhomogeneous spacetimes span at least four decades (P. Anninos,
“Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living
Rev. Relativity 4 (2001), 2).

Proceedings of the NATO Advanced
Study Institute held at Erice, Italy,
May 11-23,1981

NUMERICAL COSMOLOGIES

Joan Centrella

Center for Relativity, University of Texas, Austin,
Texas 78712

In spite of its great importance in modern cosmology, general
relativity suffers from two major misconceptions about its
relevance and usefulness., The first of these points is:

Misconception 1: General relativity is not important in
astrophysics.

This situation is all for the better since the second point
states:

Misconception 2: General relativity is intractable.

¥We claim that these statements are not true, and will now support
this claim with several examples.
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Phase transitions in the early universe and primordial
gravitational waves: Rezzolla, Miller, Pantano (1995), Bastero-
Gil, Macias-Perez, Santos (2010), Wainwright, Johnson, Peiris,
Aguirre, Lehner, Liebling (2014)
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The Late Universe

Construct numerical, fully relativistic spacetimes satisfying the Cosmological
Principle above a certain scale but inhomogeneous below it.

»  Approach I: relativistic “N-body”, regular lattices of black holes

»  Approach II: evolution of perturbed perfect fluids beyond the perturbative regime

In both cases, one first has to solve the constraint system:

R K 4
= %5 Kij = =5 i + A,
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Iniual data for cosmology

What is the influence of periodic boundary conditions on the elliptic problem?

* No solutions in Newtonian’s gravity!

Under which conditions do solutions exist? [Choquet-Bruhat, Isenberg & Pollack 2007]

* Integrability;

How much freedom is there to choose the physical data?
* Periodic boundary conditions are in a sense weaker than Dirichlet boundary conditions;

+ Extra free data has to be provided;

What is the best numerical approach?
* Which algorithms are most natural to integrate with the extra conditions?

* How do the extra conditions affect the convergence of an algorithm [Elser, Rankenburg & Thibault
2006]?



Iniual data for cosmology



Iniual data for cosmology

A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.



Iniual data for cosmology

A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.

+ Two modes of operation: generic and constraints.



Iniual data for cosmology

A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.

+ Two modes of operation: generic and constraints.

» Uses a Gauss-Seidel smoother, second- or fourth-order finite differencing.



Iniual data for cosmology

A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.

+ Two modes of operation: generic and constraints.
» Uses a Gauss-Seidel smoother, second- or fourth-order finite differencing.

+ Pass equation coefficients via grid-function names, uses the BEGIN*_MODE,
END_*_MODE macros, and the ref_restrict_all and ref_prolongate_all to move and
pass data between refinement levels. uses CCTK_Reduce to enforce the
integrability condition, no need for separate variable storage or interpolation
operators.



Iniual data for cosmology

A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.

+ Two modes of operation: generic and constraints.
» Uses a Gauss-Seidel smoother, second- or fourth-order finite differencing.

+ Pass equation coefficients via grid-function names, uses the BEGIN*_MODE,
END_*_MODE macros, and the ref_restrict_all and ref_prolongate_all to move and
pass data between refinement levels. uses CCTK_Reduce to enforce the
integrability condition, no need for separate variable storage or interpolation
operators.

+ [Bentivegna 2014]
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A multigrid solver thorn for Cactus: Carpet provides storage and execution control
for the grid structure, along with the prolongation and restriction operators. Only
needed to code in the equation’s rhs, the residual, optionally the error equation, and
some high-level control logic to carry out the chosen cycle type.

+ Two modes of operation: generic and constraints.
» Uses a Gauss-Seidel smoother, second- or fourth-order finite differencing.

+ Pass equation coefficients via grid-function names, uses the BEGIN*_MODE,
END_*_MODE macros, and the ref_restrict_all and ref_prolongate_all to move and
pass data between refinement levels. uses CCTK_Reduce to enforce the
integrability condition, no need for separate variable storage or interpolation
operators.

+ [Bentivegna 2014]
» [Support from project CosmoToolkit (PIRG05-GA-2009-249290)]
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Multiple black holes, with zero extrinsic and conformal spatial curvature
(Brill-Lindquist):

A =0

Superposition principle:

my;
=1
In a three-dimensional lattice of spacing L:

rije =/ (x —iL)2+ (y — jL)? + (2 — kL)?

Can this be generalized to an infinite number of black holes?
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Further constraint:

- €¢-d§+/

oD D

On an asymptotically flat space, the surface terms at

Ew + 52@05 -~ lw—% A AV = 2n / ppPdV + ) m;
8 12 8 / D i

B

infinity and around the punctures cancel: -

_1+22m

However, there is no surface term on the periodic
boundaries. In a periodic space, the extrinsic curvature and \ :

the scalar curvature cannot both be zero! No time

symmetric, spatially-flat solution (homogeneous dust
models have the same properties).
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General principle [Choquet-Bruhat, Kleban & Senatore 2016]. Some options:

Keep a zero extrinsic curvature, but
choose a conformal metric that is
not flat [Wheeler 1983, Clifton et al.
2012]:

Notes:

Solutions only for positive scalar
curvature (analogy to the FLRW
class);

The hamiltonian constraint is linear!
One can use the superposition
principle to construct multi-black-
hole solutions.

Keep a flat conformal metric, but
use a non-zero extrinsic curvature
[Yoo et al. 2012]:
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Requires:
Numerical integration;

Extreme care with  periodic
boundaries.
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Black-hole lattices

Other properties, however, can be substantially different. In particular,
mapping the BH lattices to the FLRW class via their geometric properties leads
to counterparts with much larger effective densities [Bentivegna & Korzynski

2012, 2013]:

Mg = peg2ma’y = 378.78,

0
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7

16 0.18 0.2 0.22 0.24

Mgpyy = 8Mapm = 303.53

One must choose which mapping
to use (fitting problem non
trivial). Fitting one observable
leads to a degradation in the
quality of fit to the others.
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Dust cosmologies

How universal is this result?
Same procedure in non-vacuum spacetimes, same ID restriction [Anninos 1999, Giblin,
Mertens & Starkman 2015, Bentivegna&Bruni, 2015]:
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~J ~
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x/L
Approach much more similar to standard cosmological treatments of perturbed fluids.

Many analytical approximations available in various regimes.
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Dust cosmologies

p—
T

» Local expansion can exhibit
departures of order ~30%
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spherical models (e.g., top-hat)
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How much does a relativistic Universe cost?
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+ Domain size: 10 Gpc

+ Smallest resolved features: 10 kpc

+ Resolution: 102! points

* Memory required: 100 doubles/point - 8 bytes - 10?! points ~ 1 Ybyte
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Early results are intriguing:

Universal initial-data no-go
Length scaling follows FLRW class

Other properties can vary significantly



