AdS nonlinear instability:
moving beyond spherical symmetry
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=> Non-linear Instability of AdS: the origins
* Linear perturbations in AdS do not decay: normal modes wlL=1+¢+2p

=> conjecture (Dafermos-Holzegel, 2006):
it should be non-linearly unstable

e Consistent with

time evolution of spherical scalar field shell in AdS: collapse to BH

[ Bizon-Rostworowski 2011 ]
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=> Understanding the onset of the instability using perturbation theory:
* Weakly perturbative turbulent instability:

— A secular term of the form €3¢ appears at 379 order in the amplitude € of linear seed

— Necessary condition for secular turbulent growth: linear spectrum is fully commensurable

[ OD, Horowitz, Marolf, Santos, 2012 ]

* Improved perturbation theory that captures the dynamics up to time scales ¢ < g2
— two time scale formalism [ Balasubramanian, Buchel, Green, Lehner, Liebling, 2014]
— renormalisation group perturbation methods [ Craps, Evnin, Vanhoof, 2014 ]

— resonant approx. [ Bizon, Maliborski, Rostworowski, 2015 ]

* Question: Is this a fine-tunning process (spherical symmetry) ?

Consider non-spherically symmetric gravitational modes.

Includes rotating modes: can centrifugal effects balance grav. collapse ?

—> Weakly perturbative turbulent analysis shows that this is NOT the case.
[ OD, Horowitz, Santos, 2011 ]



=> Understanding the onset of the instability using perturbation theory:
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Includes rotating modes: can centrifugal effects balance grav. collapse ?
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... but this is not the whole story... interesting twist:

non-spherical grav. modes favour the AdS non-linear instability



=> Technical approach to study grav. sector: (standard) perturbation theory

 Expand the metric around global AdS as g =g+ Z e h(?)

At each order (i) in perturbation theory, Einstein's equations vyield:
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where T® depends on {/h (/=i-1)} and their derivatives and
28phSy) = =V — 2R, %) — Va VD 42V Vohy))

- Expand in terms of spherical harmonics: h, ~ eimo Ym(e)
N6

¢ counts # of nodes

e There are two sectors: scalar and vector harmonics



- Bound&rv condikions

* Regularity at the origin

* Keep boundary metric fixed
(ie perturbations preserve global AdS asymptotics)

These BCs also preserve E, J

| BCs



—> Greneral Structure of perturbation problem

 Non-linearity of Einstein’s eqs:

start with a given pair {{, 7} => it generates several {{, m}’s.

15t task: identify decomposition of 7 as a sum of { ¢, m}’s:
T(i—l—l) j<Z Z (H‘l)

o If Te( i )(t 7“) has an harmonic time dependence cos(w 7), then

h(ZJrl)(t,r) will exhibit the same dependence,

EXCEPT when ® agrees with one of the normal frequencies of AdS:

WY = H,(r) cos(wt) + Hy(r) ¢ sin(wt)

Z

[ Mode is said to be RESONANT J

e Some resonances can be removed with a frequency correction ...

If not, AdS is non-linearly unstable



=> Back-reaction of SINGLE grav. normal mode can dalready trigger secular resonances

* ONLY grav. normal modes that can be back-reacted up to O(&?)
to yield a time-periodic soliton ( GEON ) are:

— Scalar modes with £ =m > 2 and p=0,
— Scalar modes with ¢ =2, m=0,1 and p=0,
— Vector modes with ¢ =2, m=0 and p=0.

e {¢, m,p}={2,2,0} case was back-reacted up to O( &°)
... actually up to any order: full nonlinear extension to a geon | Horowitz, Santos, 2014 |.

* ‘Few’ normal modes with a solitonic extension: unigue to the gravitational sector.

Real (complex) scalar field: back-reaction of any normal mode yields an oscillon (boson star).

* Due to gravity having two fundamentally distinct sectors (scalar and vector)

of normal modes whose @ spectra depend on two quantum # (not one): £ and p.

So different {¢, p }’s canyield the same @ => system more prone to develop secular resonances

Spherically symmetric scalar field has a single normal mode sector; spectrum depends only on p).



=> Consequences when we have a seed with n > 2 normal modes:

- For spherically symmetry scalar field collapse:

Collision of two normal modes always yields only a pair of irremovable resonances.

- Collision of two gravitational normal modes that do not have a geon extension

generates more than just a pair of irremovable resonances

- Strong evidence suggesting that the time evolution of the gravitational nonlinear instability
should be more ‘dramatic’ and possibly ‘even faster’ than spherical symmetric scalar field.

(although our pert. theory analysis still breaks down at O(&3) and thus for timescales above O(g-2)

- Moduli space of rotating black hole solutions in AdS [ see Way’s talk ]:

— r.=> 0 limit of a (superradiant) black resonator'isa geononlyfor £ =mz 2,p=0.

— Otherwise, limit likely to be singular



=> Direct and inverse turbulent cascades

e Seed with a single normal mode: @ of secular resonances = @ of seed

 Smoking gun of a @ cascade: secular resonances with w different from seed.

=> starting with superposition (collision) of at least fwo normal modes.

=> For example, take the seed: {l,m,p,o}s = {4,4,0,5/L}, amplitude A( )45
{f, m,p, (D}S — {67 0,0, 7/L}7 amplitude A( )6
* Two resonances, {€, m, p, w}s={4,40,5/L} and {€,m, p, w}s={6,6,0,7 / L}, removed with

Poincaré-Lindstedt o correction:
w=a+ 2w + O(e?), for achoice of i49® & oo

* But, also two irremovable secular resonances, {¢,m,p,w}s={{2,20,3/L},{88,0,9/L}}
whose quantum # do not coincide with seed:
— Firstmode: @ =3 /L => smaller than two @’s of seed.

— Secondmode: @w=9/L =—> larger than two @’s of seed.

=> So, weakly pert. turbulent mechanism predicts generation of irremovable resonances with
both larger and smaller @ than those of the seed

=> time evolution should proceed with direct and inverse @ cascades.



=> which of the cascades is likely to dominate faster the time-evolution?

Compare the coefficient of the direct and inverse cascades (in a gauge invariant way):

1) Compute boundary holographic stress energy tensor and associated energy density.

2) compare the ratio between the two secular terms.
If we assume that each of the modes in the seed carries equal energy,

the direct cascade is a factor of 10 larger than the inverse cascade,

perhaps signalling that black hole formation is likely to occur at late times.



-> Conclusions:

* Surprisingly, centrifugal effects cannot balance grav. collapse

i.e. cannot halt AdS non-linear instability

* Actually, non-spherical grav. modes favour the AdS non-linear instability

*Only a few gravitational normal modes (scalar modes with ¢ =m > 2, p=0)

can be back-reacted to non-linear order to yield a geon

* Weakly perturbative turbulent analysis:

— predicts the existence of both direct and inverse frequency cascades

— suggests the former should dominate the late time evolution
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Some properties of geons:
e Geon: regular horizonless solutions of Einstein-AdS

W
« Invariant under single helical Killing vector field: /X = Oy + — ({990
™m

which is timelike near the poles but spacelike near the equator.

Thus, it is not time symmetric neither axisymmetric but time-periodic
* Obeys the first law: dE =( o/m ) dJ
* From the QFT perspective do not seem to thermalize.

Boundary stress-tensor has regions of negative and positive energy density around the equator:




