Conformal properties of the Schwarzschild-de Sitter
spacetime

Edgar Gasperin

based on arXiv:1506.00030v2
(work in collaboration with Juan A. Valiente Kroon)
School of Mathematical Sciences
Queen Mary, University of London

e.gasperingarcia@qmul.ac.uk

GR21: Complex and conformal methods in classical and quantum gravity,
Columbia University, New York,
July 2016.

o4
WO

Queen Mary
University of London CONACYT

Edgar Gasperin (QMUL) Conformal propeties of SdS


mailto:e.gasperingarcia@qmul.ac.uk

The conformal Einstein field eauations
The Einstein equations under conformal transformations

Recall that:

@ The Einstein field equations

Rab = /\gab
are not conformally invariant!.
@ A calculation shows that if

Gab = QQQUJN

1 2
th b — —Rgap = ——=V o V)
en R 5 Jab 0 b

1 .. 3 o1
- (chv Q- @VCQV Q- WA) Jab,

where R,;,, R and V are associated to
Jab-

@ This equation is not a good equation for
the components of the metric g, as it is
formally singular whenever Q2 = 0.
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The conformal Einstein field eauations
The Einstein equations under conformal transformations

Recall that: A regular set of equations

@ The Einstein field equations [Friedrich, 1981]

Introducing the curvature as

Rab = Agab )
. . an unknown and reading the
are not conformally invariant!. strgler centomel St
@ A calculation shows that if field equation as an equation
5 for the conformal factor one
gab = "Gap, can obtain a set of regular

conformal Einstein field

1 2
then Rap — §R9”’b =g VaVel equations (CEFE).

Q
1 .. 3 . 1
_ ﬁVCV Q— ﬁchV Q- @/\ 9abs| VoV = —QLap + Sgab,
where R,;,, R and V are associated to Vas = —LacV,
Gab.- VeLay — VaLey = Vo Qd®yeq,

@ This equation is not a good equation for Vad®bea = 0,
the components of the metric g, as it is 6Qs — 3V .QVQ = ),
formally singular whenever Q2 = 0.

{Laba S, Qv dabcd = Q_1(7al7cd}
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The conformal Einstein field equations
The conformal Einstein field equations

@ Global problems in
(M, §) recast as local
problems in (M, g).

o SCEFE : Standard —
Hyperbolic reduction via
gauge source functions

o XCEFE: Extended —
Hyperbolic reduction

using a congruence of @ The XCEFE expressed in terms of a
conformal geodesics conformal Gaussian system imply an
o Conformal geodesics — evolution system of the form:
locus of .# known apriori 9,0 = Ko+ Q)0 + P(2),
e (L+ A(€))0,6 + A (e)uh = B()
g=0""g ) ~ egq, fabc, f/ab,

o} < d%ecd
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The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime in standard coordinates (¢, 7,6, ) is
determined by the line element

2 2\ 1
g:—(l———&)dt@)dt—l—(l—QTm—%) dr @ dr + r’o.
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The Schwarzschild-de Sitter spacetime
The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime in standard coordinates (¢, 7,6, @) is
determined by the line element
2 2\ —1
G=—(1-2" 2 NV gygdi+ (1-22_27)  grgdr+rio.
r 3 T 3
Q FT(r = 00) Q' r=0 Q FT(r = 00) Q' r=0 o)
He oM, "o M, “He o He SH

,”7({0 7{\(\:\\\ (,’/;:lb H\b\\\ l,’?('ic H;\\\ I//:Hb Hb\\\\

Q I (r=00) Q' r=0 Q I (r=00) Q' r=20 Q
Subextremal
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The Schwarzschild-de Sitter spacetime
The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime in standard coordinates (¢, 7,6, ) is
determined by the line element

2 2\ —1
Q:—(l—@—%)dt@)dt—k(l—?—m—%) dr @ dr +r’o.
T

T

H U H
g (r=o0)
Extremal Hyperextremal
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The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime in standard coordinates (¢, 7,0, ) is
determined by the line element

2 2\ —1
g:—<1—2—m—’\i>dt®dt+<1—2—m—i) dr @ dr + r’o.
T

T 3 3
<
Q
Q JS(r=x) r=0 Qe JS(r=) =0 Q t=constant  r=constant
® r=c) v
Q Q0
H H H
P
r=0
(b) =0
1o u - t=constant r=constant
s (r=ox)
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The Schwarzschild-de Sitter spacetime
Conformal geodesics in SdS and initial data

No explicit expression for the SdS

metric in the required Gauge!

Although the Schwarzschild-de Sitter
spacetime is an explicitly known solution, it
is very hard to recast explicitly it in terms of
a conformal Gaussian gauge hinged at .
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The Schwarzschild-de Sitter spacetime
Conformal geodesics in SdS and initial data

No explicit expression for the SdS

Induced metric at .#

metric in the required Gauge! @ The intrinsic metric of .7 is

Although the Schwarzschild-de Sitter conformally flat.

spacetime is an explicitly known solution, it @ There exists a conformal

is very hard to recast explicitly it in terms of representation of .# in which
a conformal Gaussian gauge hinged at .% the asymptotic points Q and

Asymptotic initial data Q' correspond to the North

3
All the fields in the initial data except for the A ol peles eif 5

rescaled Weyl tensor, are either gauge @ No timelike conformal
quantities or can be deduced from the intrinsic geodesics reach the
metric at .¥ asymptotic points Q and Q.

A conformal Gaussian system

@ The past domain of dependence of .# can
be covered by a non-intersecting
congruence of conformal geodesics
starting orthogonal to the conformal
boundary. [EG., A Garcia-Parrado,
Valiente Kroon]

LTINS R
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The rescaled Weyl tensor at .# The S? representation

@ The initial data for d;; satisfies the Gauss constraint @ .7 as a 3-manifold is
; smooth. However, as

D'd;; = 0. . !
! a submanifold of the

This equation well understood in the conformally flat 4-dimensional

setting [Dain & Friedrich (2001)]. unphysical spacetime

@ Spherical symmetry requires L¢d;; = 0 for each of it Fontains singular

the Killing vectors generating the spherical symmetry points: Q and Q'.

[Paetz (2014)]

4y = T (822 _5,).

r3

This solution is singular at the origin.

@ Using the stereographic projection this solution can
be transformed into a solution on S* which is singular
at the poles — Q and Q.




rescaled Weyl tensor at ¢

The initial data for d;; satisfies the Gauss constraint
D'di; = 0.
This equation well understood in the conformally flat

setting [Dain & Friedrich (2001)].

Spherical symmetry requires L¢d;; = 0 for each of
the Killing vectors generating the spherical symmetry
[Paetz (2014)]

dy = (372 5,

r3 r2

This solution is singular at the origin.

Using the stereographic projection this solution can
be transformed into a solution on S* which is singular
at the poles — Q and Q.

S P
S
D
,
,
,
.
.
g
.
%
7
N %
N 7 |
N

The S? representation

@ . as a 3-manifold is
smooth. However, as
a submanifold of the
4-dimensional
unphysical spacetime
it contains singular
points: Q and Q’.

The R x S? representation

o S? conformal to
R x S?: send North
and South poles to co.

@ In the R x S? rep. di;
is regular and
homogenous




The Schwarzschild-de Sitter spacetime

The spherically symmetric conformal evolution eqns

The core system:

@ The dynamics of the system is governed by a core system which decouples
from the rest of the equations:

é: _3X¢a
1
X:_X2+L_§@¢v

Lz—xL—%(;)(b

A 1 . A
@\/?T(lJrQ%T), @\/g(lJr%T).

@ The initial data is given by

where

6(0) =2m,  x(0)=s,  L(0) = %(1 _ ).
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The Schwarzschild-de Sitter spacetime

Theorem (E.G., J.A. Valiente Kroon, 2015)

Given asymptotic initial data which is suitably close to data for the Schwarzschild-de
Sitter spacetime, in a suitable conformal representation, there exists a solution to
Einstein field equations which exists towards the future (past) and has an asymptotic
structure similar to that of the Schwarzschild-de Sitter spacetime —that is, the solution
is future (past) weakly asymptotically simple.

S3- representation
a) b) c)

('
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Questions?

Thanks for your attention




The Schwarzscl e Sitter spaceti
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