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The conformal Einstein field equations

The Einstein equations under conformal transformations

Recall that:

The Einstein field equations

R̃ab = λg̃ab

are not conformally invariant!.
A calculation shows that if

gab = Ω2g̃ab,

then Rab −
1

2
Rgab = − 2

Ω
∇a∇bΩ

−
(

1

Ω
∇c∇cΩ−

3

Ω2
∇cΩ∇cΩ−

1

Ω2
λ

)
gab,

where Rab, R and ∇a are associated to
gab.

This equation is not a good equation for
the components of the metric gab as it is
formally singular whenever Ω = 0.

A regular set of equations
[Friedrich, 1981]

Introducing the curvature as
an unknown and reading the
singular conformal Einstein
field equation as an equation
for the conformal factor one
can obtain a set of regular
conformal Einstein field
equations (CEFE).

∇a∇bΩ = −ΩLab + sgab,

∇as = −Lac∇cΩ,
∇cLdb −∇dLcb = ∇aΩdabcd,

∇adabcd = 0,

6Ωs− 3∇cΩ∇cΩ = λ,

{Lab, s,Ω, dabcd ≡ Ω−1Cabcd}
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The conformal Einstein field equations

The conformal Einstein field equations

Global problems in
(M̃, g̃) recast as local
problems in (M, g).

SCEFE : Standard →
Hyperbolic reduction via
gauge source functions

XCEFE: Extended →
Hyperbolic reduction
using a congruence of
conformal geodesics

Conformal geodesics →
locus of I known apriori

Solution to the CEFE →
EFE

g̃ = Ω−2g

The XCEFE expressed in terms of a
conformal Gaussian system imply an
evolution system of the form:

∂τ υ̂ = Kυ̂ + Q(Γ̂)υ̂ + P(x)φ,

(I + A0(e))∂τφ+ Aα(e)∂αφ = B(Γ̂)φ

υ̂ ↔ ea, Γ̂a
b
c, L̂ab,

φ ↔ dabcd
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The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime in standard coordinates (t, r, θ, ϕ) is
determined by the line element

g̃ = −
(
1− 2m

r
− λr2

3

)
dt⊗ dt+

(
1− 2m

r
− λr2

3

)−1

dr ⊗ dr + r2σ.
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Figure 3: Penrose diagram for the subextremal Schwarzschild-de Sitter spacetime. The excluded
points Q, Q0 represent asymptotic regions where the cosmological horizon appear to meet I . As
discussed in Section 2 this region of the spacetime that does not belong to I .

Notations and conventions

The signature convention for (Lorentzian) spacetime metrics is (+,�,�,�). In these conventions
the Cosmological constant � of the de Sitter spacetime takes negative values. Cosmological
constants with negative values will be said to be de Sitter-like.

In what follows, the Latin indices a, b, c, . . . are used as abstract tensor indices while the
boldface Latin indices a, b, c, . . . are used as spacetime frame indices taking the values 0, . . . , 3.
In this way, given a basis {ea} a generic tensor is denoted by Tab while its components in the given
basis are denoted by Tab ⌘ Tabea

aeb
b. We reserve the indices i, j , k, . . . to denote frame spatial

indices respect to an adapted frame taking the values 1, 2, 3. We make systematic use of spinors.
We follow the conventions and notation of Penrose & Rindler [43]: in particular, A, B , C , . . . are
abstract spinorial indices while A, B, C , . . . will denote frame spinorial indices with respect to
some specified spin dyad {✏AA}.

Our conventions for the curvature tensors are fixed by the relation

(rarb �rbra)vc = Rc
dabv

d.

2 The Schwarzschild-de Sitter spacetime

In this section we briefly review general properties of the Schwarzschild-de Sitter spacetime.
The Schwarzschild-de Sitter spacetime is the spherically symmetric solution to the Einstein field
equations

R̃ab = �g̃ab (1)

with, in the signature conventions of this article, a negative Cosmological constant given in static
coordinates (t, r, ✓, ') by

g̃SdS = F (r)dt ⌦ dt � F (r)�1dr ⌦ dr � r2�, (2)

where the function F (r) is given by

F (r) ⌘ 1 � 2m

r
+

1

3
�r2, (3)

and � is the standard metric on the 2-sphere S2

� ⌘ d✓ ⌦ d✓ + sin2 ✓d'⌦ d',

5

Subextremal
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Figure 5: Penrose diagram for the hyperextremal Schwarzschild-de Sitter spacetime. The singu-

larity is of spacelike nature and dotted lines at 45 and 135 have been included for visualisation.

Case (a) corresponds a white hole which evolves to a final de-Sitter state. Case (b) corresponds
to a black hole with a future spacelike singularity.

the hypersurfaces of constant coordinate r are spacelike while those of constant t are timelike and

Extremal Hyperextremal
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Figure 5: Penrose diagram for the hyperextremal Schwarzschild-de Sitter spacetime. The singu-

larity is of spacelike nature and dotted lines at 45 and 135 have been included for visualisation.

Case (a) corresponds a white hole which evolves to a final de-Sitter state. Case (b) corresponds
to a black hole with a future spacelike singularity.

the hypersurfaces of constant coordinate r are spacelike while those of constant t are timelike and

t=constant r=constant
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The Schwarzschild-de Sitter spacetime

Conformal geodesics in SdS and initial data

No explicit expression for the SdS
metric in the required Gauge!

Although the Schwarzschild-de Sitter
spacetime is an explicitly known solution, it
is very hard to recast explicitly it in terms of
a conformal Gaussian gauge hinged at I

Asymptotic initial data

All the fields in the initial data except for the
rescaled Weyl tensor, are either gauge
quantities or can be deduced from the intrinsic
metric at I

A conformal Gaussian system

The past domain of dependence of I can
be covered by a non-intersecting
congruence of conformal geodesics
starting orthogonal to the conformal
boundary. [EG., A Garcia-Parrado,
Valiente Kroon]

Induced metric at I

The intrinsic metric of I is
conformally flat.

There exists a conformal
representation of I in which
the asymptotic points Q and
Q′ correspond to the North
and South poles of S3.

No timelike conformal
geodesics reach the
asymptotic points Q and Q′.
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The rescaled Weyl tensor at I

The initial data for dij satisfies the Gauss constraint

Didij = 0.

This equation well understood in the conformally flat
setting [Dain & Friedrich (2001)].

Spherical symmetry requires Lξdij = 0 for each of
the Killing vectors generating the spherical symmetry
[Paetz (2014)]

dij =
m

r3

(
3
xixj
r2
− δij

)
.

This solution is singular at the origin.

Using the stereographic projection this solution can
be transformed into a solution on S3 which is singular
at the poles → Q and Q′.

The S3 representation

I as a 3-manifold is
smooth. However, as
a submanifold of the
4-dimensional
unphysical spacetime
it contains singular
points: Q and Q′.

The R× S2 representation

S3 conformal to
R× S2: send North
and South poles to ∞.

In the R× S2 rep. dij
is regular and
homogenous
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The Schwarzschild-de Sitter spacetime

The spherically symmetric conformal evolution eqns

The core system:

The dynamics of the system is governed by a core system which decouples
from the rest of the equations:

φ̇ = −3χφ,

χ̇ = −χ2 + L− 1

2
Θφ,

L̇ = −χL− 1

2
Θ̇φ

where

Θ =

√
λ

3
τ

(
1 +

1

2
κτ
)
, Θ̇ =

√
λ

3
(1 + κτ).

The initial data is given by

φ(0) = 2m, χ(0) = κ, L(0) =
1

2
(1− κ2).
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The Schwarzschild-de Sitter spacetime

Theorem (E.G., J.A. Valiente Kroon, 2015)

Given asymptotic initial data which is suitably close to data for the Schwarzschild-de
Sitter spacetime, in a suitable conformal representation, there exists a solution to
Einstein field equations which exists towards the future (past) and has an asymptotic
structure similar to that of the Schwarzschild-de Sitter spacetime —that is, the solution
is future (past) weakly asymptotically simple.

S3- representation

a) b) c)

Figure 1: Schematic depiction of the Main Result 1. Development of asymptotic initial data close
to that of the Schwarzschild-de Sitter spacetime in the global representation —the initial metric
is ~~~, the standard metric on S3, and the asymptotic points Q and Q0 are excluded (denoted by
empty circles in the diagram). Figures a), b) and c) Illustrate the evolution of initial data close
to the Schwarzschild-de Sitter spacetime in the subextremal, extremal and hyperextremal cases
respectively. See also figures 3,4 and 5.

�1 1

Figure 2: Schematic depiction of the Main Result 1. Development of asymptotic initial data close
to that of the Schwarzschild-de Sitter spacetime in the representation in which Theorem 1 was
obtained. The initial metric, is h, the standard metric on R⇥S2 and the asymptotic points Q and
Q0 are at infinity respect to h. — Since ~~~ and h are conformally flat one has h = !2~~~. The initial
data for the subextremal, extremal and hyperextremal cases is formally identical. Small enough
perturbations the development has the same asymptotic structure as the reference spacetime

in this article we analyse the conformal properties of the exact Schwarzschild-de Sitter spacetime
by means of an asymptotic initial value problem for the conformal field equations. Accordingly,
we compute the initial data implied by the Schwarzschild-de Sitter spacetime on the conformal
boundary and use this data to analyse the behaviour of the conformal evolution equations. An
important property of these evolution equations is that their essential dynamics is governed by a
core system which, despite its apparent analytical simplicity, is a model for the understanding of
the formation of singularities in the general (i.e. non-spherically symmetric) conformal evolution
equations. Consequently, an important aspect of our discussion consists of the analysis of the
formation of singularities in the core system. This analysis is irrespective of the relation between
� 6= 0 and m. This allow us to formulate a result which is valid for the subextremal, extremal and
hyperextremal Schwarzschild-de Sitter spacetime characterised by the conditions 0 < 9m2|�| < 1,
|�| = 1/9m2 and |�| > 1/9m2 respectively.

The main result

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime allows us to
formulate a result concerning the non-linear stability of the asymptotic region of this spacetime
—See figure 1 and 2. Our nonlinear stability results can be stated as:

Main Result 1 (stability of the SdS spacetime: asymptotic initial value problem).
Given asymptotic initial data which is suitably close to data for the Schwarzschild-de Sitter space-
time, in a suitable conformal representation, there exists a solution to Einstein field equations
which exists towards the future (past) and has an asymptotic structure similar to that of the
Schwarzschild-de Sitter spacetime —that is, the solution is future (past) asymptotically simple.

3
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The Schwarzschild-de Sitter spacetime

Questions?

Thanks for your attention
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The Schwarzschild-de Sitter spacetime
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A. Garćıa-Parrado, E. Gaspeŕın, & J.A. Valiente Kroon, Conformal geodesics in the Schwarzshild-de Sitter and Schwarzschild anti-de Sitter spacetimes , In
preparation, 2016.

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems ,Arch. Ration. Mech. Anal. 58, 181 (1975).

H.-O. Kreiss & J. Lorenz, Stability for time-dependent differential equations , Acta Numerica 7(203) (1998).
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