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Outline

McVittie spacetimes: embedding of the Schwarzschild field in an
FLRW universe

Axioms and generalisation to non-flat FLRW backgrounds

Global structure (radial null geodesics; k = 0,±1)

Bound particle and photon orbits (k = 0)

Summary: apply some results from dynamical systems to the
interpretation of an interesting (?) and important (??) solution of the
Einstein equations
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The metric: axiomatic approach

(C1) Spacetime (M, g) is spherically symmetric and is filled with a
spherically symmetric, shear-free perfect fluid. Einstein’s equation
with a cosmological constant is satisfied.

(C2) The invariant Weyl scalar satisfies

Ψ2 = −M

r3
,

where M is a constant and r is the area-radius of the spacetime.
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Useful invariants...

Lemma

If (C1) and (C2) hold, then there exist invariant functions A, f of the
cosmic time t such that

χ := gαβr,αr,β = 1− 2
M

r
+ (A(t)− e2f (t))r2,

ψ := pαβr,αr,β = 1− 2
M

r
+ A(t)r2,

where pαβ = gαβ + uαuβ is projection orthogonal to the fluid flow vector
uα.
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...in FLRW

Lemma

In an FLRW spacetime,

χ := gαβr,αr,β = 1− (h2 + ka−2)r2,

ψ := hαβr,αr,β = 1− k

a2
r2,

where hαβ = gαβ + uαuβ is projection orthogonal to the fluid flow vector
uα, a = a(t) is the scale factor, h = ȧ/a is the Hubble function and k is
the curvature index.

(C3) The functions A, f take the values found in an FLRW spacetime:

A(t) =
k

a2
, e2f = h2.
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Flat and non-flat

NB Use the area radius as a coordinate!

Bring in the remaining field equations...a further function of
integration arises.

In the flat case, k = 0, this is removed with a coordinate
transformation: there is a unique solution which is McVittie’s 1933
solution.

In the non-flat case, we need an additional condition to uniquely
specify the metric:

(C4) The pressure is homogeneous in the zero-mass limit:
limM→0 P(t, r) = P(t).

This leads to a unique class of spacetimes depending on (i) a
parameter M; (ii) a function a(t) and (iii) an index k = 0,±1.
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Basic properties

Proposition

Given D = (M, a(t), k), there is a unique spacetime (M, g) satisfying
(C1)− (C4).

Explicit line element for k = 0; needs an elliptic integral φ = φ(D)
when k = ±1;

fluid expansion is homogeneous: θ = θ0(t);

8πµ+ Λ = 3(h2 + ka−2),
8πP − Λ = −φ−1 ∂

∂t (h2 + ka−2)− 3(h2 + ka−2);

M = 0 gives FLRW k,a(t);

matter-free limit gives (i) Schwarzschild (k ≤ 0); (ii) Schwarzschild-de Sitter
(all k); (iii) Schwarzschild-Anti de Sitter (k < 0).
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Global structure

ds2 = −φ2
(
h−2 − r2ψ−1

)
dt2 − 2φrψ−1dtdr + ψ−1dr2 + r2dΩ2.

In the k = 0 case, ψ = 1− 2M
r forms a past space-like singular

boundary (P →∞).

In the k = ±1 cases, ψ = 0 is (essentially) a coordinate singularity
(cf. r = a(t) in the k = +1 FLRW spacetime). The Big Bang
a(t) = 0 is the past boundary.

For Λ ≥ 0 and h > 0, future evolution of k = −1 is same as k = 0.
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Class 1:

lim
t→0+

a(t) = 0, h(t) > 0∀ t > 0, lim
t→+∞

h(t) =
√

3Λ > 0

r = 2m, t ∈ (0,+∞)

I+•B

•A

•O

Penrose-Carter diagram for Class 1 McVittie.
The singular boundary at r = 2m forms the past boundary.
There is an inner horizon at r = r−, the inner horizon of the
corresponding Schwarzschild-de Sitter spacetime.
The boundaries at infinity are at infinite affine distance.
Structure is universal for all Class 1 (cf. Kaloper et al (2010); Lake &
Abdelqader (2011); Nolan (2014)).
Kaloper et al conjectured, and Lake & Abdelqader demonstrated
extendibility to Schwarzschild-de Sitter across the inner horizon.
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Bound particle orbits

Proposition

Let r = r◦ be the radius of a stable particle orbit in Schwarzschild(-de
Sitter) spacetime. The for initial values with
|H(t0)− H0|, |r(t0)− r◦|, |ṙ(t0)| sufficiently small, the particle orbit in
(Λ ≥ 0, k = 0) McVittie spacetime decays exponentially to a stable orbit
(around r = r◦) of the Schwarzschild(-de Sitter) spacetime.
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Sample sketch proof: particle orbits in Λ = 0

Lemma

Let x = (H, r , ṙ). There exists a C 2 function w : R→ R, with w(0) = 0,
such that the geodesic equations read

Ḣ = w(H)u(x), (1)

ṙ = p, (2)

ṗ = −V ′(r) + rH2 + rf 1/2w(H)u(x)2. (3)

The C 2 function u is defined in a neighbourhood of x0 = (0, r◦, 0) and
ṫ = u(x).

Key point: x0 is a non-hyperbolic equilibrium point of the flow.
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Schwarzschild dynamics → McVittie dynamics

Recall that H(t)→ 0 as t →∞. {x : H = 0} is an invariant manifold
of the flow, corresponding to particle motion in Schwarzschild
spacetime:

r̈ + V ′m,`(r) = 0.

Then

Q =
1

2
ṙ2 + Vm,`(r)− Vm,`(r◦)

is a Lyapunov function for the flow.

McVittie dynamics: Q is no longer conserved, but its evolution can be
controlled by a Gronwall-type argument.

Along the geodesic, H(t(s)) undergoes exponential decay, with overall
exponential decay to an elliptic orbit of Schwarzschild spacetime.
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Class 2 (Λ = 0): M = 1, r◦ = 7M , h(t) = 2
3t
−1, ` = 7/2
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along the time-like
geodesic.

Note that r → 2M+ at
finite proper time in the
past.

The geodesic is future
complete.
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Spacetime representation
of the geodesic; t and τ
increase downwards.

H → 0 as τ →∞, and
the trajectory oscillates
around r = r◦ = 7M.
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Conclusions

The singular surface {r = 2M, t > 0} forms a past boundary of the
spacetime: all causal geodesics meet this surface at finite
affine/proper time in the past. This cut-off is absent in the case
k = −1: the Big Bang remains as the past boundary.

Global structure results extend from k = 0 to k = −1 for all
expanding, Big Bang FLRW backgrounds with Λ ≥ 0.

The central region can capture photons and particles, maintaining
them in future complete, bound orbits.

Class 1 and 2 McVittie spacetimes admit ISCO’s, indicating
possibility of formation of thin accretion disks. This is a black
hole-like quality of these spacetimes.

Model for an inhomogeneity in an FLRW background.

See BC Nolan, CQG 31 235008 (2014) and references therein.
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