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“On the gravitational seesaw and light bending”
Accioly, Giacchini & Shapiro, 2016, arXiv:1604.07348



1. Superrenormalizable higher-derivative gravity

e General Relativity (GR): Einstein, 1915 LIGHTS ALL ASKEW
AL

e Solar eclipse, 1919: light bending * IN'THE HEAVENS
e Higher-derivative gravity (HDG): "‘-i’;o‘;fofj";‘::ul’;";;:;;p‘;zs?
Cbservations.
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* Superrenormalizable HDG
[Asorey, Lopez & Shapiro, Int. Jour. Mod. Phys. A, 1997]
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* If Ris odd =2 1 it is possible to have all massive poles complex, and
S-matrix becomes unitary in the Lee-Wick sense. [Modesto, Shapiro, PLB 2016]

* However, even with real massive poles, ghost instabilities may be
put under control by other mechanisms close to the Planck scale.

[Salles & Shapiro, PRD 2014; Shapiro, Pelinson & Salles, MPLA 29, 2014]

* We shall assume that higher derivatives exist, and look for its
consequences even at the low-energy realm.



* For small curvatures we may write

S = grrn ‘/”’_L VvV — 4 £m-

- L A B
*Svgrﬂ-i.-‘ — /(]—1.;,. { R —f_ p T = P;—;p + TRDR T 7RII.J;DR,!W}

e String theory prescribes A~', B~' x7% ~ M3

* Would it be possible to have a seesaw-like mechanism in this

theory, so that huge-mass parameters k2, A", B! combine into a
small physical mass?

* What are observable consequences of a small-mass excitation?

* How does light deflect in presence of massive complex poles
in the propagator?



2. Gravitational seesaw

* Solution of linearized field equations sourced by a point-like mass
M in rest:
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k = 0,2 labels the spin of the particles whose masses are
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2. Gravitational seesaw

* Solution of linearized field equations sourced by a point-like mass
M in rest:

ho = To=( -7 +3R-3h).
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* If 16|B| < x23? then
B

* In order to have m, on the order of Planck mass:
" i. A~1 and |B| ~ M,?
= ii. #> 1 and |B| > M,? (on account of reducing m,,)

Only “weak” seesaw is possible: making a large mass
even larger by increasing the dimensionless parameter £.

* This result can be generalized to actions with arbitrary order
on the operator [

Small physical mass only with small massive parameters on
the action. Lighter mass cannot be reduced by tuning the
coefficients of the sixth- (or more-) derivative term:s.



3. Light bending in semiclassical SHDG

e Gravitational field: external and classical

e Vertex function:
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* Unpolarized cross-section for small angles:
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» Scalar modes do not affect light propagation

» Dispersive propagation of photons



Ist scenario: real poles

* Unpolarized cross-section for small angles:
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» Since m,_ > m, , light deflects less than in GR

» More energetic photons undergo less deflection
» E » m, : no deflection at all
» E < m,,: deflects like in GR
» Nontrivial scattering for intermediate energies

* Seesaw (huge f): m, > m,, ~E



> Ifm,_ > m,, ~E
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= Fix E and solve for 8 =Am,,) For a photon

= Fix 8 and solve for E/m.,, grazing the Sun



» Ifmy, > m,, ~E
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* Fix E and solve for 8 =@8m,,) — for a photon grazing the Sun

Violet deflects
less than red
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» Ifmy, > m,, ~E
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= Fix 8 and solve for E/m,, - for a photon grazing the sun

* For =0, -0.17: | o
by _ 4.30 x 1077

E 2 Only one order of
magnitude smaller than
figures from torsion-

e Radio (10 GHz): m, > 1018 GeV SEIEIEE SPEhmais
* Visible (7.4 x 10> Hz): m, > 103 GeV
* Crab pulsar (10?” Hz = 10 TeV): m, > 10 GeV

Planck mass ~ 10'° GeV



2nd scenario: complex poles

Moy = (ag — iby), Mo = (ag + iby)

* Unpolarized cross-section for small angles:
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* If a, 2 b,: light bend less than in GR, more energetic photons

undergo less scattering.

* If a, < b,: cross section is no longer bounded by GR’s one.
Stronger bending is possible, but is suppressed by the massive
parameters a, and b2. [Accioly, Giacchini & Shapiro, paper in preparation]



4. Conclusions

Only weak seesaw is possible in HDG: to have a much lighter tensor
ghost one must have small massive parameters on the action — and a

huge S.

This protects the theory from ghost instabilities by adding higher-order
terms — but makes detection of higher derivatives more difficult.

Scattering of photons is dispersive, ghosts yield repulsive forces.

Bound on the lighter tensor excitation mass: from 4th order gravity (or
“seesaw” effect): m, > 1013 GeV. [Accioly et. al, PRD, 2015]

Figure comparable to torsion-balance experiments; 13 orders of

magnitude greater than previous literature results. [stelle, Gen. Relativ. Gravit.,
1978; Giacchini, Proc. 14th Marcel Grossmann Meeting (to appear, 2016)]

More stringent bound for more energetic photons.

Dispersive gravitational lensing can provide important information
about higher derivatives in gravity. arXiv:-1604.07348
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