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Motivation

We want to represent very concentrated sources of matter/ energy
in gravity theories.

These model thin shells of matter, braneworlds, impulsive waves, ...

To treat properly these objects, one has to resort to theory of
distributions:

The sums of distributions, the derivative of a distribution, and
the tensor product of a tensor field with a tensor distribution
are well defined.
In general, the product of distributions is not well defined.

We will make use of a class of metrics that generate a distributional
curvature tensor, so that the field equations make sense.

Smooth metrics, except on a localized hypersurface where they
are only continuous.

Israel (1966), Taub (1980), Clarke and Dray (1987), Mars and
Senovilla (1993)
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Setting

The (timelike) hypersurface Σ splits V into V±.

~n: (spacelike) unit normal vector to Σ. (n: normal one form)

~ea: basis of vectors tangent to Σ. (ωa: dual basis)

In V±, the metric g agrees with g± and it is smooth.

The metric g is only continuous across Σ. The induced metric is
hαβ = gαβ |Σ − nαnβ , and ∇ its associated covariant derivative.

The jump/discontinuity of f is denoted by

∀q ∈ Σ, [f ] (q) ≡ lim
x →
V+

q
f+(x)− lim

x →
V−

q
f−(x) .

We define f |Σ := (1/2)( lim
x →
V+

q
f+(x) + lim

x →
V−

q
f−(x)).
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Concentrated sources in gravity: geometry

Metric: g = g+θ + g−(1− θ), g = g+ θ + (1− θ) g−.

Riemann tensor distribution

Rαβµν = R+α
βµν θ +R−

α
βµν (1− θ) +Hα

βµν δ
Σ,

Second fundamental form: κ±ab := eαae
β
b∇±αnβ , κ±αβ = ωaαω

b
βκ
±
ab

Singular part of the Riemann tensor distribution

Hαβµν = nα([κβµ]nν − [κβν ]nµ) + nβ([καν ]nµ − [καµ]nν)

Mars, Senovilla (1993)
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Concentrated sources in gravity: geometry

Metric: g = g+θ + g−(1− θ), g = g+ θ + (1− θ) g−.

Riemann tensor distribution

Rαβµν = R+α
βµν θ +R−

α
βµν (1− θ) +Hα

βµν δ
Σ,

Second fundamental form: κ±ab := eαae
β
b∇±αnβ , κ±αβ = ωaαω

b
βκ
±
ab

At any point x ∈ Σ where the hypersurface is non-null, the neccessary
and sufficient condition for Hαβµν to vanish is that καβ is continuous
across the hypersurface.

Mars, Senovilla (1993)
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Concentrated sources in gravity: geometry

From contractions of the Riemann tensor distribution

Ricci tensor distribution

Rβν = R+
βν θ +R−βν (1− θ) +Hβν δ

Σ,

with singular part Hβν ≡ Hρ
βρν = −[κβν ]− [καα]nβnν .

Ricci scalar distribution

R = R+ θ +R− (1− θ) +H δΣ,

with singular part H ≡ Hβ
β = −2[κββ ].

H = 0⇔ [καα] = 0.

Einstein tensor distribution

Gβν = G+
βν θ +G−βν (1− θ) + Gβν δΣ,

with singular part Gβν ≡ Hβν − 1
2gβνH = −[κβν ]− [καα]nβnν .
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Concentrated sources in gravity: geometry

Some properties of the singular part of the Einstein tensor Gαβ :

Gβν = −[κβν ] + [καα]hβν ,

nβGβν = 0.

The Bianchi identities hold in the distributional sense Mars, Senovilla
(1993)

∇α(Gαβ) = 0.

This implies

κΣ
ρσGρσ = nβnµ [Gβµ] , (normal)

∇βGβµ = −nρhσµ [Gρσ] . (tangent)

These properties and results are independent of the field equations, and

therefore valid in GR, F(R), quadratic gravity,...
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General Relativity

Field equations in General Relativity in the distributional sense

Gαβ = 8πTαβ .

Hence the structure of the energy momentum tensor distribution must be

Tαβ = T+
αβθ + T−αβ(1− θ) + ταβ δ

Σ.

Singular part of the Energy Momentum tensor distribution

1 nαταβ = 0

2 Israel equations
hσµn

ρ [Tρσ] +∇βτβµ = 0,

nσnρ [Tρσ]− κΣ
ρστ

ρσ = 0.
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General Relativity

Proper matching

Energy momentum tensor without singular terms

ταβ = 0⇔ [κab] = 0.

Removes the singular part of the curvature tensor distribution.

Restricts the possible jumps, encoded in Bαβ = Bβα, with
nαBαβ = 0

[Rαβµν ] = Bβνnαnµ +Bαµnβnν −Bανnβnµ −Bβµnαnν ,
[Rαβ ] = Bρρnαnβ +Bαβ ,

[R] = 2Bαα ,

[Gαβ ] = Bαβ −Bρρhαβ ⇒ nα[Gαβ ] = 0.

In particular:

Israel conditions

nα[Tαβ ] = 0.

10



Outline

1 Motivation and setting

2 Concentrated sources in gravity: General Relativity

3 Concentrated sources in gravity: Quadratic gravity

11



Quadratic gravity

Theories of gravity arising from the Lagrangian density (k := 8πG/c2):

L =
1

2k

(
R− 2Λ + a1R

2 + a2RµνR
µν + a3RαβµνR

αβµν
)

+ Lmatter.

Field equations contain higher order derivatives:

Gαβ + Λgαβ +Gqαβ = kTαβ ,

where Gqαβ encodes the part that comes from the quadratic terms:

Gqαβ = 2
{
a1RRαβ − 2a3RαµR

µ
β + a3RαρµνRβ

ρµν + (a2 + 2a3)RαµβνR
µν

−
(
a1 +

1

2
a2 + a3

)
∇α∇βR+

(
1

2
a2 + 2a3

)
�Rαβ

}
−1

2
gαβ

{
(a1R

2 + a2RµνR
µν + a3RργµνR

ργµν)− (4a1 + a2)�R
}
,

with � := gµν∇µ∇ν . Terms in blue involve products and those in red

derivatives of distributions.
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Quadratic gravity

The derivatives in Gq act linearly in R and Rαβ

∇α∇βR, �Rαβ , gαβ�R,

but these imply derivatives of singular distributions: “δΣ′”.
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Quadratic gravity

The derivatives in Gq act linearly in R and Rαβ

∇α∇βR, �Rαβ , gαβ�R,

but these imply derivatives of singular distributions: “δΣ′”.

The following terms in Gq involve products of singular distributions (e.g.
δΣδΣ)

a1RRαβ , a1R
2,

a3RαµR
µ
β , a3RαρµνRβ

ρµν , (a2 + 2a3)RαµβνR
µν , a2RµνR

µν , a3RργµνR
ργµν .

Product of (singular) distributions is not well defined.
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Quadratic gravity

The following terms in Gq involve products of singular distributions (e.g.
δΣδΣ)

a1RRαβ , a1R
2,

a3RαµR
µ
β , a3RαρµνRβ

ρµν , (a2 + 2a3)RαµβνR
µν , a2RµνR

µν , a3RργµνR
ργµν .

We distinguish two cases depending on the theory of gravity:

1 a2 = a3 = 0: This corresponds to f(R) = R+ 2Λ + a1R
2.

[καα] = 0.

Distributional scalar curvature without singular part, and with
[R] 6= 0 in general: R = R+θ +R−(1− θ).

2 A generic case with a2 or a3 6= 0

[καβ ] = 0.

Distributional curvature without singular part, and with
[Rαβµν ] 6= 0 in general: Rαβµν = R+

αβµνθ +R−αβµν(1− θ).
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Quadratic gravity

Energy momentum tensor distribution

The curvature distributions and the field equations for quadratic gravity lead to

Tµν = T+
µνθ + T−µν(1− θ) + τµνδ

Σ + (2τ(µnν) + τnµnν)δΣ + tµν .

•T+
µν and T−µν are the EM tensors in V+ and V−.

•τµν is the EM tensor on Σ.

•τα is the external flux momentum.

•τ is the external pressure.

•tαβ is a double layer.

Appear in GR

New!

Found for the 1st time in quadratic F(R) theories. Senovilla (2013, 2014, 2015)
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Quadratic gravity

The energy momentum tensor on Σ

For a2 = a3 = 0

kταβ = −(1 + 2a1R|Σ)[καβ ] + 2a1(nρ[∇ρR]hαβ − [R]καβ |Σ)

Otherwise

kταβ = −(2a1 + a2 + 2a3)[R]καβ +
(

2a1 +
a2

2

)
nρ[∇ρR]hαβ

+2
(

2a3 +
a2

2

)
nρ[∇ρRµν ]hµαh

ν
β .

This appears also on GR, but with a different expression.

The external flux momentum

kτα = −(2a1 + a2 + 2a3)∇α[R] + 2
(

2a3 +
a2

2

)
nρ[∇ρRµν ]nµhνα.

Singular normal-tangent component in Tµν , it does not exist in GR.

It measures the energy flux/stress on Σ.

External pressure

kτ = (2a1 +a2 +2a3)[R]κρρ+
(

2a3 +
a2

2

)
(2nρ[∇ρRµν ]nµnν−nρ[∇ρR]).

This scalar does not exist in GR.

It accounts for the (normal) tension on Σ. 15



Quadratic gravity

Double layer energy momentum tensor tαβ with strength µαβ
It acts on test tensors as

k
〈
tαβ , Y

αβ
〉

= −
∫

Σ

kµαβn
ρ∇ρY αβdv .

kµαβ = (2a1 + a2 + 2a3)[R]hαβ + 2
(

2a3 +
a2

2

)
[Gαβ ]

Absent in GR.

The distribution tαβ has support on Σ, but we have to know the

extension of the test tensor Y αβ off Σ.

It models a dipole distribution with strength µαβ .

The double layer is fundamental for the conservation of the energy
momentum tensor distribution.

Relation between the three new objects

τα = −∇ρµρα, τ = καβ |Σµαβ
External flux momentum and external pressure do not exist without the
double layer!
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kµαβn
ρ∇ρY αβdv .

kµαβ = (2a1 + a2 + 2a3)[R]hαβ + 2
(

2a3 +
a2

2

)
[Gαβ ]

Absent in GR.

The distribution tαβ has support on Σ, but we have to know the

extension of the test tensor Y αβ off Σ.

It models a dipole distribution with strength µαβ .

In electrostatics, the Poisson equation for the potential Φ
generated by a dipole-layer distribution with strength D
localized at some surface S reads

∆Φ = −∆′S , < ∆′S , f >=

∫
S

D~n · ~∇fdA.

It models a dipole distribution with strength µαβ .

The double layer is fundamental for the conservation of the energy
momentum tensor distribution.

Relation between the three new objects

τα = −∇ρµρα, τ = καβ |Σµαβ
External flux momentum and external pressure do not exist without the
double layer!
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The distribution tαβ has support on Σ, but we have to know the

extension of the test tensor Y αβ off Σ.

It models a dipole distribution with strength µαβ .

The double layer is fundamental for the conservation of the energy
momentum tensor distribution.

Relation between the three new objects

τα = −∇ρµρα, τ = καβ |Σµαβ
External flux momentum and external pressure do not exist without the
double layer!
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Quadratic gravity

Generalization of the Israel equations of General Relativity:

Field equations on the layer

nαhρβ [Tαρ] +∇αταβ = −µαρ∇βκαρ|Σ +∇ρ(µαρκαβ |Σ − µαβκαρ|Σ),

nαnβ [Tαβ ]− ταβκαβ = ∇α∇βµαβ + µρν
(
nαnγRΣ

αργν + καρ |Σκνα|Σ
)
.

Three distinct type of terms:

Jumps of the normal component of the energy momentum tensor.

Energy momentum in the shell, including its divergence.

Double layer strength (plus extrinsic curvature).

These equations agree with Israel equations in absence of double layers.

17



Quadratic gravity

Proper matchings

Tµν = T+
µνθ + T−µν(1− θ)

[hαβ ] = 0, [καβ ] = 0, (as in GR)

That now must be supplemented with

Case with a2 = a3 = 0

[R] = 0, [∇ρR] = 0.

Generic case (∗)

[Rαβ ] = 0, [∇ρRαβ ] = 0.

This actually implies that the full Riemann tensor and its first derivatives
have no jumps across Σ:

[Rαβλµ] = 0, [∇ρRαβλµ] = 0.

(∗) 4a3 + a2 6= 0 and 4a3 + (1 + n)a2 + 4na1 6= 0
18



Quadratic gravity

Consider the proper matching, in GR, of a perfect fluid ball with vacuum:

(V, g)

Σ

Denote by pGR and ρGR the isotropic
pressure and density of the fluid as
computed in GR, and by uα the unit fluid
flow.

Σ is determined by pGR|Σ = 0.

The discontinuities of the Einstein and
Ricci scalar read:

[Gαβ ] = kρGRuαuβ |Σ, [R] = kρGR.

Take this same spacetime to a quadratic theory of gravity and recall

kµαβ = (2a1+a2+2a3)[R]hαβ+(4a3 + a2) [Gαβ ], τα = −∇ρµρα, τ = καβ |Σµαβ .

The proper matching hypersurface in GR will develop double layer and
surface terms in quadratic gravity!
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Quadratic gravity

Conclusions

1 We have found the generalized Israel equations for sources localized
in a hypersurface Σ.

2 In general, double layers can develop in the hypersurface Σ.

Essential for the conservation of the energy momentum tensor
distribution.

3 In absence of double layers, the generalized Israel equations are
identical to the Israel equations derived in GR.

4 A solution properly matched in GR is not a solution satisfying a
proper matching in quadratic gravity, in general.
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